Klasterisasi Penggunaan Trafik Internet Menggunakan K-Mean Clustering

نویسندگان

چکیده

Penggunaan trafik internet dalam suatu kantor pemerintah perlu diawasi secara cermat untuk memperoleh efisiensi pemakaiannya baik dan tepat guna. Jalur yang telah disediakan merupakan fasilitas resmi dibiayai dari anggaran bersumber rakyat sehingga cermat. Domain Name System (DNS) menyediakan data kaya menarik, serta dapat diekstraksi mengungkap informasi bisa dianalisis bagi berbagai keperluan seperti tindakan keamanan, mengukur tingkat penggunaan trafik, pembatasan bandwidth, user profiling hingga kebijakan lain diterapkan jaringan. Penelitian ini bertujuan membuat klasterisasi terhadap memberikan manfaat digunakan meningkatkan layanan jaringan (QoS), melakukan pemakaian bandwidth profile pengguna. dilakukan berdasarkan DNS Log dioperasikan pada terhubung ke internet. Pada penelitian diperlihatkan bagaimana konsolidasi port 53/udp guna mengumpulkan log, dengan cara aktivitas pengguna dicatat sebuah server terpusat akhirnya sebagai sumber primer. Datasets ekstraksi berasal log file Server (dnsmasq) diambil selama 5 hari kerja periode jam kerja. Total datasets hasil adalah sebanyak 213 records. Data-data tersedia selanjutnya diolah mendapatkan target klaster memanfaatkan konsep mining menggunakan metode K-Mean Clustering. Analisis pengolahan manual aplikasi Microsoft Excel K-Mean, berhasil mengelompokkan menjadi 3 yaitu tinggi, sedang rendah. Masing-masing terdiri Kla1 = 23, Kla2 3, Kla3 =160.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison between Standard K-Mean Clustering and Improved K-Mean Clustering

Clustering in data mining is very important to discover distribution patterns and this importance tends to increase as the amount of data grows. It is one of the main analytical methods in data mining and its method influences its results directly. K-means is a typical clustering algorithm[3]. It mainly consists of two phases i.e. initializing random clusters and to find the nearest neighbour. ...

متن کامل

K-mean Based Clustering and Context Quantization

In this thesis, we study the problems of K-means clustering and context quantization. The main task of K-means clustering is to partition the training patterns into k distinct groups or clusters that minimize the mean-square-error (MSE) objective function. But the main difficulty of conventional K-means clustering is that its classification performance is highly susceptible to the initialized s...

متن کامل

A Genetic Algorithm for K-Mean Clustering

A Genetic Algorithm for K-Mean Clustering Varsha Singh Asst. Prof. JSSATE, Noida, Uttar Pradesh, India Prof A K Misra Professor, Deptt of CSE, MNNIT Allahabad, Uttar Pradesh, India _________________________________________________________________________________________ Abstract: Clustering techniques have obtained adequate results when are applied to data mining problems. Clustering is the pro...

متن کامل

K-Mean Clustering and PSO: A Review

Clustering is a method which divides data objects into groups based on the information found in data that describes the objects and relationships among them. There are a variety of algorithms have been developed in recent years for solving problems of data clustering. Data clustering algorithms can be either hierarchical or partitioned. Most promising among them are K-means algorithm which is p...

متن کامل

Improved K-mean clustering with Mobile Agent

The data stream model has recently attracted attention for its applicability to numerous types of data, including telephone records, Web documents, and click streams. For analysis of such data, the ability to process the data in a single pass, or a small number of passes, while using little memory, is crucial. D-Stream algorithm is an extended grid-based clustering algorithm for different dimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal Sistim Informasi dan Teknologi

سال: 2022

ISSN: ['2686-3154']

DOI: https://doi.org/10.37034/jsisfotek.v4i3.141